Lipid peroxidation-derived aldehydes and oxidative stress in the failing heart: role of aldose reductase.
نویسندگان
چکیده
Lipid peroxidation-derived aldehydes (LP-DA) can propagate oxidative injury and are detoxified by the aldose reductase (AR) enzyme pathway in myocardium. Whether there are alterations in the AR axis in heart failure (HF) is unknown. Sixteen instrumented dogs were studied before and after either 24 h or 4 wk of rapid left ventricular (LV) pacing (early and late HF, respectively). Six unpaced dogs served as controls. In early HF, there was subtle depression of LV performance (maximum rate of LV pressure rise, P < 0.05 vs. baseline) but no chamber enlargement, whereas in late HF there was significant (P < 0.05) contractile depression and LV dilatation. Oxidative stress was increased at both time points, indexed by tissue malondialdehyde, total glutathione, and free C6-C9 LP-DA (P < 0.025 vs. control). AR protein levels and activity decreased progressively during HF (P < 0.025 early/late HF vs. control); however, AR mRNA expression decreased only in late HF (P < 0.005 vs. early HF and control). DNA binding of tonicity-responsive enhancer binding protein (TonEBP, a transcriptional regulator of AR) paralleled AR mRNA, declining >50% in late HF (P < 0.025 vs. control). We conclude that AR levels and attendant myocardial capacity to detoxify LP-DA decline during the development of HF. In early HF, decreased AR occurs due to a translational or posttranslational mechanism, whereas in late HF reduced TonEBP transcriptional activation and AR downregulation contribute significantly. Reduced AR-mediated LP-DA metabolism contributes importantly to LP-DA accumulation in the failing heart and thus may augment chronic oxidative injury.
منابع مشابه
Redox activation of aldose reductase in the ischemic heart.
Aldose reductase (AR) reduces cytotoxic aldehydes and glutathione conjugates of aldehydes derived from lipid peroxidation. Its inhibition has been shown to increase oxidative injury and abolish the late phase of ischemic preconditioning. However, the mechanisms by which ischemia regulates AR activity remain unclear. Herein, we report that rat hearts subjected to ischemia, in situ or ex vivo, di...
متن کاملInvolvement of aldose reductase in the metabolism of atherogenic aldehydes.
Phospholipid peroxidation generates a variety of aldehydes, which includes free saturated and unsaturated aldehydes, and aldehydes that remain esterified to the phosphoglyceride backbone - the so-called 'core' aldehydes. However, little is known in regarding the vascular metabolism of these aldehydes. To identify biochemical pathways that metabolize free aldehydes, we examined the metabolism of...
متن کاملInvolvement of Aldose Reductase in Vascular Smooth Muscle Cell Growth and Lesion
Abnormal proliferation of vascular smooth muscle cells (VSMCs) is an important feature of atherosclerosis, restenosis, and hypertension. Although multiple mediators of VSMC growth have been identified, few effective pharmacological tools have been developed to limit such growth. Recent evidence indicating an important role for oxidative stress in cell growth led us to investigate the potential ...
متن کاملInvolvement of aldose reductase in vascular smooth muscle cell growth and lesion formation after arterial injury.
Abnormal proliferation of vascular smooth muscle cells (VSMCs) is an important feature of atherosclerosis, restenosis, and hypertension. Although multiple mediators of VSMC growth have been identified, few effective pharmacological tools have been developed to limit such growth. Recent evidence indicating an important role for oxidative stress in cell growth led us to investigate the potential ...
متن کاملIdentification of cardiac oxidoreductase(s) involved in the metabolism of the lipid peroxidation-derived aldehyde-4-hydroxynonenal.
The aim of this study was to identify the cardiac oxidoreductases involved in the metabolism of 4-hydroxy-2-trans-nonenal (HNE), an alpha,beta unsaturated aldehyde generated during the peroxidation of omega-6 polyunsaturated fatty acids. In homogenates of bovine, human and rat ventricles the primary pyridine coenzyme-linked metabolism of HNE was associated with NADPH oxidation. The NADPH-depend...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 283 6 شماره
صفحات -
تاریخ انتشار 2002